GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex.
نویسندگان
چکیده
1. We compared gamma-aminobutyric acid (GABA)-mediated responses of identified pyramidal cells and fast spiking interneurons in layer V of visual cortical slices from young rats (P11-14). 2. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was similar in pyramidal cells and interneurons (1.7 vs. 1.9 Hz). For events with 10-90% rise times less than 0.9 ms, no significant differences were found in mean amplitude (61 vs. 65 pA), mean rise time (0.58 vs. 0.61 ms), or the first time constant of decay (tau 1, 6.4 vs. 6.5 ms) between pyramidal cells and interneurons. The second decay time constant (tau 2) was significantly longer in interneurons than in pyramidal cells (49 vs. 22 ms). The difference in sIPSC decay kinetics between two cell types also existed in adult rats (P36-42), suggesting the kinetic difference in not due to differential development of GABAA receptors in these cell types. 3. The decay kinetics of monosynaptic evoked IPSCs were also longer in interneurons. As in the case of sIPSCs, the difference was accounted for by the second decay time constant. tau 1 and tau 2 were, respectively, 13 and 64 ms for interneurons and 12 and 47 ms for pyramidal cells. 4. Cell-attached patch recordings revealed that the mean open time for single Cl- channels in response to 2 microM GABA was significantly longer in interneurons than pyramidal cells (5.0 vs. 2.8 ms). The chord conductance of these channels in interneurons (12 pS) was significantly smaller than in pyramidal cells (15 pS). Single channel currents reversed polarity when the pipette potential was approximately -10 mV for both cell types. 5. These results show that there is a functional diversity of GABAA receptors in electrophysiologically and morphologically identified cortical pyramidal cells and interneurons. This diversity might derive from the different molecular composition of the receptors in these two cell types.
منابع مشابه
Agent-selective effects of volatile anesthetics on GABAA receptor-mediated synaptic inhibition in hippocampal interneurons.
BACKGROUND A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal cells in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role for the maintenance of anesthesia. The aim of this study was to compare effects produced by volatile anesthetics on inhibitory posts...
متن کاملOutput of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex
Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the postsynaptic effects of neurogliaform cells in...
متن کاملO7: Functional Characterization of Human GABAA Autoantibodies in the Context of Limbic Encephalitis
Limbic encephalitis is an adaptive autoimmune disease, induced by different autoantibodies, which target extracellular neuronal epitopes, such as NMDA or GABAB receptors1,2. Recently our group found another human antibody, which binds to the α1 subunit of the GABAA receptor. Since the GABAA receptor is responsible for the majority of fast inhibitory neurotransmission, we investigated chan...
متن کاملSpecialized inhibitory synaptic actions between nearby neocortical pyramidal neurons.
We found that, in the mouse visual cortex, action potentials generated in a single layer-2/3 pyramidal (excitatory) neuron can reliably evoke large, constant-latency inhibitory postsynaptic currents in other nearby pyramidal cells. This effect is mediated by axo-axonic ionotropic glutamate receptor-mediated excitation of the nerve terminals of inhibitory interneurons, which connect to the targe...
متن کاملA Major Role For Tonic GABAA Conductances In Anesthetic Suppression Of Intrinsic Neuronal Excitability
Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABAA inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 506 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1998